login
a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.
0

%I #23 Dec 25 2018 17:28:53

%S 2,2,1,0,2,1,0,2,1,2,0,1,0,0,2,0,0,1,2,0,1,0,0,1,0,0,1,2,2,2,2,2,1,2,

%T 2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,

%U 2,2,2,1,2,2,2,2,2,1,2,2,1,0,2,1,0,2,1

%N a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.

%C The length of the sequence is equal to 3^3^3 = 7625597484987.

%e 1D cellular automaton with rule=1 gives the following generations:

%e 1 ..........1.......... <------ start

%e 2 111111111...111111111 <------ end

%e 3 ..........1..........

%e 4 111111111...111111111

%e 5 ..........1..........

%e 6 111111111...111111111

%e 7 ..........1..........

%e The period is 2, thus a(1) = 2.

%e For rule=150:

%e 1 ..........1..... <------ start

%e 2 .........22..... <------ end

%e 3 ........1.......

%e 4 .......22.......

%e 5 ......1.........

%e 6 .....22.........

%e 7 ....1...........

%e The period is 2, thus a(150) = 2.

%e For rule=100000000797:

%e 1 .........1....... <------ start

%e 2 ........2.2......

%e 3 ........111......

%e 4 .......2.112.....

%e 5 .......12........

%e 6 ......21.........

%e 7 ........2........ <------ end

%e 8 ........1........

%e 9 .......2.2.......

%e 10 .......111.......

%e 11 ......2.112......

%e 12 ......12.........

%e 13 .....21..........

%e 14 .......2.........

%e 15 .......1.........

%e The period is 7, thus a(100000000797) = 7.

%e a(10032729) = 12.

%e a(10096524) = 16.

%t Table[

%t Length[

%t Last[

%t FindTransientRepeat[(Internal`DeleteTrailingZeros[

%t Reverse[Internal`DeleteTrailingZeros[#]]]) & /@

%t CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]],

%t {i, 1, 1000}

%t ]

%Y Cf. A180001.

%K nonn,fini

%O 1,1

%A _Philipp O. Tsvetkov_, Sep 27 2018