login
A319776
Number of partitions of 2n in which any two distinct parts differ by at least n.
2
1, 2, 4, 6, 8, 9, 14, 13, 17, 20, 23, 22, 31, 28, 33, 38, 40, 39, 49, 45, 54, 57, 58, 57, 70, 68, 71, 76, 81, 78, 93, 86, 94, 98, 99, 104, 116, 109, 114, 119, 128, 123, 138, 131, 140, 149, 146, 145, 162, 158, 166, 168, 173, 170, 185, 184, 193, 194, 195, 194
OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Alois P. Heinz)
FORMULA
a(n) = A218698(2n,n).
MAPLE
g:= proc(n, i) option remember;
add(`if`(irem(n, j)=0, 1, 0), j=1..i)
end:
a:= proc(n) option remember; numtheory[tau](2*n)+
add(g(2*n-j, min(2*n-j, j-n)), j=n+1..2*n-1)
end: a(0):=1:
seq(a(n), n=0..100);
MATHEMATICA
g[n_, i_] := g[n, i] = Sum[If[Mod[n, j] == 0, 1, 0], {j, 1, i}];
a[n_] := a[n] = DivisorSigma[0, 2n] + Sum[g[2n - j, Min[2n - j, j - n]], {j, n + 1, 2n - 1}]; a[0] = 1;
a /@ Range[0, 100] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A218698.
Sequence in context: A074901 A189294 A125990 * A191921 A227979 A349151
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 27 2018
STATUS
approved