login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319133
a(1) = a(2) = 1; for n > 2, a(n+2) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).
5
1, 1, 1, 3, 3, 8, 5, 16, 7, 29, 12, 41, 14, 76, 16, 92, 28, 142, 30, 185, 32, 268, 48, 298, 50, 466, 59, 500, 80, 683, 82, 817, 84, 1072, 114, 1134, 134, 1583, 136, 1649, 170, 2176, 172, 2444, 174, 3032, 239, 3134, 241, 4174, 254, 4353, 316, 5343, 318, 5815, 352, 7121, 418, 7287, 420, 9357, 422, 9527, 525
OFFSET
1,4
LINKS
N. J. A. Sloane, Transforms
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = Sum[DivisorSigma[0, (n - 2)/d] a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 65}]
PROG
(PARI) A319133(n) = if(n<=2, 1, sumdiv(n-2, d, numdiv((n-2)/d)*A319133(d))); \\ (non-memoized implementation) - Antti Karttunen, Sep 11 2018
(PARI)
\\ Faster implementation:
up_to = 4240;
A319133list(up_to) = { my(u=vector(up_to)); u[1] = u[2] = 1; for(n=3, up_to, u[n] = sumdiv(n-2, d, numdiv((n-2)/d)*u[d])); (u); };
v319133 = A319133list(up_to);
A319133(n) = v319133[n]; \\ Antti Karttunen, Sep 11 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 11 2018
STATUS
approved