

A319135


Primes p such that, when multiplied by any power of 2, the result is a term of A318929.


1



7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879, 2903, 2963, 2999, 3023
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Once a prime when multiplied by two is admitted to the sequence A318929, by definition of A318929 subsequent multiplications by 2 are also terms.
Terms are primes of the form 4k + 3, k > 0.


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

7 is a term because 7*2 = A318929(2).
11 is a term because 11*2 = A318929(3).
23 is a term because 23*2 = A318929(6).


PROG

(PARI) lista(nn) = {my(v = select(x>is318929(x), vector(nn, k, k))); v = apply(x>x/2^(valuation(x, 2)), v); v = select(x>isprime(x), v); vecsort(v, , 8); } \\ Michel Marcus, Sep 13 2018


CROSSREFS

Cf. A318929, A161897, A005385.
Sequence in context: A228227 A107133 A079138 * A163848 A111671 A213895
Adjacent sequences: A319132 A319133 A319134 * A319136 A319137 A319138


KEYWORD

nonn


AUTHOR

Torlach Rush, Sep 11 2018


EXTENSIONS

More terms from Michel Marcus, Sep 13 2018


STATUS

approved



