login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318293
E.g.f. satisfies y'' + y' + x^3*y = 0 with y(0)=0, y'(0)=1.
3
0, 1, -1, 1, -1, 1, -25, 85, -205, 415, -751, 13351, -74551, 277501, -825301, 2114017, -31272601, 234796831, -1167200191, 4534428271, -14884655503, 196703557717, -1802713881757, 11116971405937, -53015088629977, 211179438004855, -2599947442920103, 27477399011166703, -200902152943783903
OFFSET
0,7
LINKS
FORMULA
(n+3)*(n+2)*(n+1)*a(n) + a(n+4) + a(n+5) = 0.
MAPLE
f:= gfun:-rectoproc({(n+3)*(n+2)*(n+1)*a(n)+a(n+4)+a(n+5)=0, a(0) = 0, a(1) = 1, a(2) = -1, a(3) = 1, a(4) = -1}, a(n), remember):
map(f, [$0..30]);
MATHEMATICA
m = 30; egf = DifferentialRoot[Function[{y, x}, {y''[x] + y'[x] + x^3*y[x] == 0, y[0] == 0, y'[0] == 1}]]; CoefficientList[egf[x] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Apr 27 2019 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Robert Israel, Aug 23 2018
STATUS
approved