login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318290
Expansion of Sum_{k>=1} (-1 + Product_{j>=1} (1 + j*x^(k*j))).
1
1, 3, 6, 10, 16, 33, 44, 74, 126, 204, 289, 503, 696, 1151, 1749, 2599, 3742, 5928, 8245, 12658, 18351, 26715, 37828, 55296, 78346, 111882, 159664, 226782, 315416, 446670, 618667, 860764, 1199995, 1649820, 2289020, 3157349, 4303996, 5878786, 8033272, 10894516, 14749052
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A022629.
LINKS
FORMULA
G.f.: Sum_{k>=1} A022629(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} A022629(d).
MAPLE
a:=series(add(-1+mul(1+j*x^(k*j), j=1..100), k=1..100), x=0, 42): seq(coeff(a, x, n), n=1..41); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 41; Rest[CoefficientList[Series[Sum[-1 + Product[(1 + j x^(k j)), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]]
b[n_] := b[n] = SeriesCoefficient[Product[(1 + k x^k), {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 41}]
b[0] = 1; b[n_] := b[n] = Sum[Sum[(-d)^(k/d + 1), {d, Divisors[k]}] b[n - k], {k, 1, n}]/n; a[n_] := a[n] = Sum[b[d], {d, Divisors[n]}]; Table[a[n], {n, 41}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 23 2018
STATUS
approved