login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318292
Prime-indexed primes q such that prime(q) + q + 1 is a prime-indexed prime.
2
5, 109, 1913, 2081, 2351, 2897, 3169, 4027, 4397, 8221, 9461, 9661, 13613, 14969, 17117, 17483, 24133, 28109, 31513, 32969, 47417, 60149, 61627, 73259, 84809, 89213, 105929, 113051, 124121, 143477, 152767, 156671, 159667, 162947, 174893, 209621, 219533, 223637, 241463, 243469, 250307, 263591
OFFSET
1,1
COMMENTS
This sequence and the sequence of resulting primes prime(q)+q+1 (17,709, 18433, 20231, 23251, 29269, 32323, 42181, ...) are subsequences of A006450, the prime indexed primes.
LINKS
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
EXAMPLE
a(1) is 5 because 5 = prime(3) and prime(5) + 5 + 1 = 17 = prime(7), and no smaller prime has this property.
MAPLE
N:=300000:
for n from 1 to N do
if isprime(n) then q:=ithprime(n);
Z:=numtheory[pi](n);
P:=q+n+1;
R:=numtheory[pi](P);
if isprime(Z) and isprime(P) and isprime(R) then print(n);
end if:
end if:
end do:
PROG
(PARI) isok(p) = isprime(p) && isprime(primepi(p)) && isprime(q=prime(p)+p+1) && isprime(primepi(q)); \\ Michel Marcus, Sep 19 2018
CROSSREFS
Sequence in context: A195561 A142510 A195552 * A012239 A012121 A371882
KEYWORD
nonn
AUTHOR
STATUS
approved