login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime-indexed primes q such that prime(q) + q + 1 is a prime-indexed prime.
2

%I #17 Sep 22 2018 04:24:58

%S 5,109,1913,2081,2351,2897,3169,4027,4397,8221,9461,9661,13613,14969,

%T 17117,17483,24133,28109,31513,32969,47417,60149,61627,73259,84809,

%U 89213,105929,113051,124121,143477,152767,156671,159667,162947,174893,209621,219533,223637,241463,243469,250307,263591

%N Prime-indexed primes q such that prime(q) + q + 1 is a prime-indexed prime.

%C This sequence and the sequence of resulting primes prime(q)+q+1 (17,709, 18433, 20231, 23251, 29269, 32323, 42181, ...) are subsequences of A006450, the prime indexed primes.

%H N. Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>

%H N. Fernandez, <a href="/A006450/a006450.html">An order of primeness</a> [cached copy, included with permission of the author]

%e a(1) is 5 because 5 = prime(3) and prime(5) + 5 + 1 = 17 = prime(7), and no smaller prime has this property.

%p N:=300000:

%p for n from 1 to N do

%p if isprime(n) then q:=ithprime(n);

%p Z:=numtheory[pi](n);

%p P:=q+n+1;

%p R:=numtheory[pi](P);

%p if isprime(Z) and isprime(P) and isprime(R) then print(n);

%p end if:

%p end if:

%p end do:

%o (PARI) isok(p) = isprime(p) && isprime(primepi(p)) && isprime(q=prime(p)+p+1) && isprime(primepi(q)); \\ _Michel Marcus_, Sep 19 2018

%Y Cf. A000040, A006450.

%K nonn

%O 1,1

%A _David James Sycamore_, Aug 22 2018