login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318355
E.g.f. satisfies y'' + y' - x^3*y = 0 with y(0)=1, y'(0)=0.
3
1, 0, 0, 0, 0, 6, -6, 6, -6, 6, 2010, -5034, 9354, -15294, 23214, 3425946, -14420202, 39956622, -91344462, 186057582, 16587374034, -100426428462, 373729722942, -1102658529702, 2821830587382, 173435605897902, -1393014153140430, 6550484329740030, -23751957393091230, 73275084201645330
OFFSET
0,6
LINKS
FORMULA
(n+3)*(n+2)*(n+1)*a(n) - a(n+4) - a(n+5) = 0.
Sum_{k=0..n} (2*k-n)*binomial(n,k)*a(k)*A318356(n-k) = (-1)^n * n. - Robert Israel, Aug 26 2018
MAPLE
f:= gfun:-rectoproc({(n+3)*(n+2)*(n+1)*a(n)-a(n+4)-a(n+5)=0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0}, a(n), remember):
map(f, [$0..30]);
MATHEMATICA
m = 30; egf = DifferentialRoot[Function[{y, x}, {y''[x] + y'[x] - x^3*y[x] == 0, y[0] == 1, y'[0] == 0}]]; CoefficientList[egf[x] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Apr 27 2019 *)
PROG
(Magma) I:=[1, 0, 0, 0, 0]; [n le 5 select I[n] else (n-3)*(n-4)*(n-5)*Self(n-5)-Self(n-1): n in [1..30]]; // Vincenzo Librandi, Aug 26 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Robert Israel, Aug 24 2018
STATUS
approved