OFFSET
0,6
LINKS
Robert Israel, Table of n, a(n) for n = 0..691
FORMULA
(n+3)*(n+2)*(n+1)*a(n) - a(n+4) - a(n+5) = 0.
Sum_{k=0..n} (2*k-n)*binomial(n,k)*a(k)*A318356(n-k) = (-1)^n * n. - Robert Israel, Aug 26 2018
MAPLE
f:= gfun:-rectoproc({(n+3)*(n+2)*(n+1)*a(n)-a(n+4)-a(n+5)=0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0}, a(n), remember):
map(f, [$0..30]);
MATHEMATICA
m = 30; egf = DifferentialRoot[Function[{y, x}, {y''[x] + y'[x] - x^3*y[x] == 0, y[0] == 1, y'[0] == 0}]]; CoefficientList[egf[x] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Apr 27 2019 *)
PROG
(Magma) I:=[1, 0, 0, 0, 0]; [n le 5 select I[n] else (n-3)*(n-4)*(n-5)*Self(n-5)-Self(n-1): n in [1..30]]; // Vincenzo Librandi, Aug 26 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Robert Israel, Aug 24 2018
STATUS
approved