The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318237 E.g.f. satisfies y'' + y' + x^3*y = 0 with y(0)=1, y'(0)=0. 4
 1, 0, 0, 0, 0, -6, 6, -6, 6, -6, 2022, -5046, 9366, -15306, 23226, -3492978, 14513442, -40082622, 91510782, -186272862, 17287893150, -101669044938, 375834179418, -1106090219778, 2827251464658, -186528404076558, 1421197285803630, -6607708961772030, 23862716390308830, -73480979595056730 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Robert Israel, Table of n, a(n) for n = 0..691 FORMULA (n+3)*(n+2)*(n+1)*a(n) + a(n+4) + a(n+5) = 0. MAPLE f:= gfun:-rectoproc({(n+3)*(n+2)*(n+1)*a(n)+a(n+4)+a(n+5)=0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0}, a(n), remember): map(f, [\$0..20]); MATHEMATICA RecurrenceTable[{a[n] == -a[n-1] - (n-2)*(n-3)*(n-4)*a[n-5], a[0]==1, a[1]==0, a[2]==0, a[3]==0, a[4]==0}, a, {n, 0, 30}] (* G. C. Greubel, Aug 24 2018 *) PROG (PARI) m=30; v=concat([0, 0, 0, 0, -6], vector(m-5)); for(n=6, m, v[n]= -v[n-1] - (n-2)*(n-3)*(n-4)*v[n-5]); concat([1], v) \\ G. C. Greubel, Aug 24 2018 (Magma) I:=[0, 0, 0, 0, -6]; [1] cat [n le 5 select I[n] else -Self(n-1) - (n-2)*(n- 3)*(n-4)*Self(n-5): n in [1..30]]; // G. C. Greubel, Aug 24 2018 CROSSREFS Sequence in context: A245399 A243758 A318355 * A201572 A261468 A001734 Adjacent sequences: A318234 A318235 A318236 * A318238 A318239 A318240 KEYWORD sign AUTHOR Robert Israel, Aug 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 21:19 EDT 2024. Contains 375017 sequences. (Running on oeis4.)