login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318236
a(n) = (3*2^(4*n+3) + 1)/5.
1
5, 77, 1229, 19661, 314573, 5033165, 80530637, 1288490189, 20615843021, 329853488333, 5277655813325, 84442493013197, 1351079888211149, 21617278211378381, 345876451382054093, 5534023222112865485, 88544371553805847757, 1416709944860893564109, 22667359117774297025741
OFFSET
0,1
COMMENTS
a(n) is the smallest positive multiplicative inverse of 5 modulo 2^(4*n+3).
In binary, a(n) is written as 10011001...1001101 where "1001" appears n times. When n approaches infinity we get the 2-adic expansion of 1/5: ...10011001101. Similarly, the 2-adic expansion of 1/3 is ...101010101011.
FORMULA
O.g.f.: (5 - 8*x)/((1 - x)*(1 - 16*x)).
E.g.f.: (24*exp(16*x) + exp(x))/5.
a(0) = 5, a(1) = 77; for n>1, a(n) = 17*a(n-1) - 16*a(n-2).
EXAMPLE
The smallest solution to 5*x == 1 (mod 8) is x = (3*2^3 + 1)/5 = 5.
The smallest solution to 5*x == 1 (mod 128) is x = (3*2^7 + 1)/5 = 77.
MATHEMATICA
Table[(3 2^(4 n + 3) + 1) / 5, {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2018 *)
LinearRecurrence[{17, -16}, {5, 77}, 20] (* Harvey P. Dale, Sep 25 2020 *)
PROG
(PARI) a(n) = (3*2^(4*n + 3) + 1)/5
(Magma) [(3*2^(4*n + 3) + 1)/5: n in [0..20]]; // Vincenzo Librandi, Aug 24 2018
(Python)
def A318236(n): return (3*(1<<(n<<2)+3)+1)//5 # Chai Wah Wu, Jul 29 2022
CROSSREFS
A007583 gives the smallest positive multiplicative inverse of 3 modulo 2^(2*n) and 2^(2*n+1), A299960 gives the smallest positive multiplicative inverse of 5 modulo 2^(4*n), 2^(4*n+1) and 2^(4*n+2).
Sequence in context: A186660 A287041 A360351 * A009485 A188455 A015056
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Aug 21 2018
STATUS
approved