login
A316267
FDH numbers of strict integer partitions of prime numbers with a prime number of prime parts.
2
12, 21, 57, 123, 249, 417, 532, 699, 867, 1100, 1389, 1463, 1509, 1708, 2049, 2068, 2307, 2324, 2913, 3116, 3147, 3157, 3273, 3325, 3619, 3903, 4227, 4268, 4636, 4821, 5079, 5225, 5324, 5516, 5739, 6308, 6391, 6524, 6621, 6644, 7469, 8092, 8193, 8225, 8457
OFFSET
1,1
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).
EXAMPLE
Sequence of strict integer partitions of prime numbers with a prime number of prime parts, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
57: (11,2)
123: (17,2)
249: (29,2)
417: (41,2)
532: (11,5,3)
699: (59,2)
867: (71,2)
1100: (13,7,3)
1389: (101,2)
1463: (11,7,5)
1509: (107,2)
1708: (23,5,3)
MATHEMATICA
nn=1000;
FDfactor[n_]:=If[n==1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor, nn, 1, Union]; FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Select[Range[nn], And[PrimeQ[Total[FDfactor[#]/.FDrules]], PrimeQ[Length[FDfactor[#]]], And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 28 2018
STATUS
approved