login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228766
Number of undirected circular permutations i_1,...,i_{n-1} of 1,...,n-1 with i_1 + i_2, i_2 + i_3, ..., i_{n-2} + i_{n-1}, i_{n-1} + i_1 pairwise distinct modulo n.
6
0, 1, 1, 1, 1, 12, 21, 74, 309, 1376, 5016, 27198, 138592, 928544, 4735266, 31263708, 206761952, 1677199872, 11111483094
OFFSET
3,6
COMMENTS
Conjecture: a(n) > 0 for all n > 3. In general, if a_1,...,a_n are n > 2 distinct elements of a finite additive abelian group G with n odd or |G| not divisible by n, then there exists a circular permutation b_1,...,b_n of a_1,...,a_n such that b_1+b_2, b_2+b_3, ..., b_{n-1}+b_n, b_n+b_1 are pairwise distinct.
Note that if g is a primitive root modulo a prime p > 3 then 1+g, g+g^2, ..., g^{p-3}+g^{p-2}, g^{p-2}+1 are pairwise distinct modulo p. So a(p) > 0 for any prime p > 3.
If n > 2 is odd, then 0+1, 1+2, ..., (n-2)+(n-1), (n-1)+0 are pairwise distinct modulo n, and hence the conjecture holds in the case {a_1,...,a_n} = G = Z/nZ.
LINKS
Zhi-Wei Sun, Some new problems in additive combinatorics, arXiv preprint arXiv:1309.1679 [math.NT], 2013-2014.
EXAMPLE
a(4) = 1 due to the circular permutation (1,2,3).
a(5) = 1 due to the circular permutation (1,2,4,3).
a(6) = 1 due to the circular permutation (1,3,5,2,4).
a(7) = 1 due to the circular permutation (1,3,2,6,4,5).
a(8) = 12 due to the circular permutations
(1,2,4,5,3,7,6), (1,2,6,7,3,4,5), (1,2,7,6,4,3,5), (1,4,2,5,6,3,7), (1,4,2,7,3,5,6), (1,4,3,7,2,6,5), (1,4,7,3,6,2,5), (1,5,2,3,6,4,7), (1,5,3,2,7,4,6), (1,5,4,7,3,2,6), (1,5,6,4,3,2,7), (1,6,5,4,2,3,7).
a(9) > 0 due to the permutation (1,2,3,4,6,5,8,7).
a(10) > 0 due to the permutation (1,2,4,5,6,8,9,3,7).
a(11) > 0 due to the permutation (1,2,3,4,6,7,5,10,9,8).
MATHEMATICA
(* A program to compute required circular permutations for n = 9. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (1, 7, 8, 5, 6, 4, 3, 2) is identitical to (1, 2, 3, 4, 6, 5, 8, 7) if we ignore direction. *)
V[i_]:=Part[Permutations[{2, 3, 4, 5, 6, 7, 8}], i]
m=0
Do[If[Length[Union[{Mod[1+Part[V[i], 1], 9]}, Table[Mod[Part[V[i], j]+If[j<7, Part[V[i], j+1], 1], 9], {j, 1, 7}]]]<8, Goto[aa]];
m=m+1; Print[m, ":", " ", 1, " ", Part[V[i], 1], " ", Part[V[i], 2], " ", Part[V[i], 3], " ", Part[V[i], 4], " ", Part[V[i], 5], " ", Part[V[i], 6], " ", Part[V[i], 7]]; Label[aa]; Continue, {i, 1, 7!}]
PROG
(Sage)
import itertools
def a(n):
ans = 0
for p in itertools.permutations([i for i in range(1, n)]):
if len(set((p[i]+p[(i+1)%(n-1)])%n for i in range(n-1))) == n-1: ans += 1
return ans/(2*n-2) # Robin Visser, Sep 27 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Zhi-Wei Sun, Sep 03 2013
EXTENSIONS
a(12)-a(19) from Bert Dobbelaere, Sep 08 2019
a(20)-a(21) from Robin Visser, Sep 27 2023
STATUS
approved