login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A308565
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling1(n,k) * k!.
0
1, 1, 0, -6, -12, 140, 1020, -5208, -117264, -2448, 17756640, 117905040, -3177424800, -56997933408, 523176632160, 25824592321920, 31907065317120, -12118922683971840, -151839867298498560, 5619086944920958464, 172859973799199892480, -1989399401447725854720, -170925579909303883614720
OFFSET
0,4
FORMULA
a(n) = n! * [x^n] (1 + log(1 + x))^n.
MATHEMATICA
Table[Sum[Binomial[n, k] StirlingS1[n, k] k!, {k, 0, n}], {n, 0, 22}]
Table[n! SeriesCoefficient[(1 + Log[1 + x])^n, {x, 0, n}], {n, 0, 22}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 07 2019
STATUS
approved