login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308564
Expansion of e.g.f. Sum_{k>=1} phi(k)*(exp(x) - 1)^k/k!, where phi = Euler totient function (A000010).
1
1, 2, 6, 22, 90, 404, 1974, 10366, 57864, 341690, 2134022, 14104624, 98498972, 723664482, 5561589508, 44473028634, 368602225688, 3159852790392, 27997141025686, 256410638073082, 2428063270357748, 23774001479212114, 240580239864321604, 2513553050765310236
OFFSET
1,2
COMMENTS
Stirling transform of A000010.
LINKS
FORMULA
G.f.: Sum_{k>=1} phi(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*phi(k).
MAPLE
b:= proc(n, m) option remember; uses numtheory;
`if`(n=0, phi(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Aug 04 2021
MATHEMATICA
nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[StirlingS2[n, k] EulerPhi[k], {k, 1, n}], {n, 1, 24}]
CROSSREFS
Sequence in context: A089449 A264601 A374551 * A226435 A292318 A150271
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 07 2019
STATUS
approved