login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307656
G.f. A(x) satisfies: (1 - x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...
0
1, -1, 2, 1, 0, 8, -7, 22, -6, 13, 29, -11, 82, -36, 114, 13, 103, 88, 88, 275, -20, 549, -200, 1007, -144, 811, 730, 188, 2093, -777, 3538, -643, 4083, -537, 4562, 2478, 1973, 8062, -3508, 17362, -8164, 20281, -2227, 17483, 8605, 2946, 30190, -6085, 53176, -28913, 78516
OFFSET
0,3
COMMENTS
Convolution inverse of A307648.
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(mu(k)*k).
G.f.: exp(-Sum_{k>=1} A046970(k)*x^k/k).
EXAMPLE
G.f.: A(x) = 1 - x + 2*x^2 + x^3 + 8*x^5 - 7*x^6 + 22 x^7 - 6*x^8 + 13*x^9 + 29*x^10 - 11*x^11 + 82*x^12 - 36*x^13 + ...
MATHEMATICA
terms = 50; CoefficientList[Series[Product[(1 - x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x]
terms = 50; CoefficientList[Series[Exp[-Sum[Sum[MoebiusMu[d] d^2, {d, Divisors[k]}] x^k/k, {k, 1, terms}]], {x, 0, terms}], x]
terms = 50; A[_] = 1; Do[A[x_] = (1 - x)/Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 20 2019
STATUS
approved