login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307648 G.f. A(x) satisfies: 1/(1 - x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ... 3
1, 1, -1, -4, -3, -2, 7, 7, 4, -6, 14, -11, -4, -47, 9, 6, 161, -93, -33, -269, 232, -83, 660, -733, 500, -779, 1527, -2291, 1876, -3892, 5598, -3056, 7791, -14088, 11289, -17113, 28083, -26211, 34645, -60715, 73180, -80951, 111926, -155269, 178561, -233709, 359679, -403884, 454659, -697310, 862133 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Euler transform of A055615.

LINKS

Table of n, a(n) for n=0..50.

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^k)^(mu(k)*k).

G.f.: exp(Sum_{k>=1} A046970(k)*x^k/k).

EXAMPLE

G.f.: A(x) = 1 + x - x^2 - 4*x^3 - 3*x^4 - 2*x^5 + 7*x^6 + 7*x^7 + 4*x^8 - 6*x^9 + 14*x^10 - 11*x^11 - 4*x^12 - 47*x^13 + ...

MATHEMATICA

terms = 50; CoefficientList[Series[Product[1/(1 - x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x]

terms = 50; CoefficientList[Series[Exp[Sum[Sum[MoebiusMu[d] d^2, {d, Divisors[k]}] x^k/k, {k, 1, terms}]], {x, 0, terms}], x]

terms = 50; A[_] = 1; Do[A[x_] = 1/((1 - x) Product[A[x^k]^k, {k, 2, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

CROSSREFS

Cf. A008683, A046970, A055615, A117209, A307649.

Sequence in context: A286388 A194758 A074066 * A067016 A022295 A258415

Adjacent sequences:  A307645 A307646 A307647 * A307649 A307650 A307651

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Apr 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 17:12 EST 2021. Contains 349424 sequences. (Running on oeis4.)