login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307649
G.f. A(x) satisfies: (1 + x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...
3
1, 1, -2, -5, 0, 4, 9, 2, -10, -21, 29, 15, -18, -80, 50, 59, 207, -228, -244, -315, 868, 103, 360, -1907, 752, -151, 3802, -5032, 965, -5279, 13742, -6049, 9107, -33835, 25398, -15098, 63365, -79614, 51752, -117194, 196980, -156321, 209085, -435223, 463497, -441950, 871202, -1146187, 1023944, -1704179
OFFSET
0,3
COMMENTS
Weigh transform of A055615.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^(mu(k)*k).
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2 - 5*x^3 + 4*x^5 + 9*x^6 + 2*x^7 - 10*x^8 - 21*x^9 + 29*x^10 + 15*x^11 - 18*x^12 - 80*x^13 + ...
MATHEMATICA
terms = 49; CoefficientList[Series[Product[(1 + x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x]
terms = 49; A[_] = 1; Do[A[x_] = (1 + x)/Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 19 2019
STATUS
approved