login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067881
Factorial expansion of sqrt(3) = Sum_{n>=1} a(n)/n!.
3
1, 1, 1, 1, 2, 5, 0, 4, 2, 5, 10, 8, 1, 5, 6, 8, 5, 13, 18, 0, 7, 20, 9, 6, 14, 2, 7, 7, 18, 11, 0, 12, 20, 10, 31, 28, 27, 34, 29, 18, 13, 8, 28, 14, 9, 12, 39, 5, 15, 8, 5, 0, 7, 21, 54, 13, 16, 20, 24, 18, 12, 14, 6, 53, 21, 42, 47, 14, 46, 14, 42, 71, 41, 63, 24, 28, 32, 61, 35
OFFSET
1,5
FORMULA
a(1) = 1; for n > 1, a(n) = floor(n!*sqrt(3)) - n*floor((n-1)!*sqrt(3)).
EXAMPLE
sqrt(3) = 1 + 1/2! + 1/3! + 1/4! + 2/5! + 5/6! + 0/7! + 4/8! + 2/9! + ...
MAPLE
Digits:=200: a:=n->`if`(n=1, floor(sqrt(3)), floor(factorial(n)*sqrt(3))-n*floor(factorial(n-1)*sqrt(3))): seq(a(n), n=1..90); # Muniru A Asiru, Dec 11 2018
MATHEMATICA
With[{b = Sqrt[3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2018 *)
PROG
(PARI) default(realprecision, 250); {b = sqrt(3); a(n) = if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b))};
for(n=1, 80, print1(a(n), ", ")) \\ G. C. Greubel, Dec 10 2018
(PARI) apply( A067881(n)=if(n>1, sqrt(precision(3., n*log(n/2.5)\2.3+2))*(n-1)!%1*n\1, 1), [1..79]) \\ M. F. Hasler, Dec 14 2018
(Magma) SetDefaultRealField(RealField(250)); [Floor(Sqrt(3))] cat [Floor(Factorial(n)*Sqrt(3)) - n*Floor(Factorial((n-1))*Sqrt(3)) : n in [2..80]]; // G. C. Greubel, Dec 10 2018
(Sage) b=sqrt(3);
def a(n):
if (n==1): return floor(b)
else: return expand(floor(factorial(n)*b) - n*floor(factorial(n-1)*b))
[a(n) for n in (1..80)] # G. C. Greubel, Dec 10 2018
CROSSREFS
Cf. A002194 (decimal expansion), A040001 (continued fraction).
Cf. A009949 (sqrt(2)), A068446 (sqrt(5)), A320839 (sqrt(7)).
Sequence in context: A247449 A112695 A215078 * A307649 A024714 A123342
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved