login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A307539
Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
4
1, 2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
OFFSET
0,2
LINKS
FORMULA
a(n) = A330394(A088218(n)). - Alois P. Heinz, Mar 03 2020
EXAMPLE
The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401.
MAPLE
a:= n-> mul(ithprime(i), i=[n$n]):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 03 2020
MATHEMATICA
Table[If[n==0, 1, Prime[n]]^n, {n, 0, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 13 2019
STATUS
approved