login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307539
Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
4
1, 2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
OFFSET
0,2
LINKS
FORMULA
a(n) = A330394(A088218(n)). - Alois P. Heinz, Mar 03 2020
EXAMPLE
The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401.
MAPLE
a:= n-> mul(ithprime(i), i=[n$n]):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 03 2020
MATHEMATICA
Table[If[n==0, 1, Prime[n]]^n, {n, 0, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 13 2019
STATUS
approved