login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
4

%I #9 Mar 04 2020 16:42:21

%S 1,2,9,125,2401,161051,4826809,410338673,16983563041,1801152661463,

%T 420707233300201,25408476896404831,6582952005840035281,

%U 925103102315013629321,73885357344138503765449,12063348350820368238715343,3876269050118516845397872321

%N Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Alois P. Heinz, <a href="/A307539/b307539.txt">Table of n, a(n) for n = 0..303</a>

%F a(n) = A330394(A088218(n)). - _Alois P. Heinz_, Mar 03 2020

%e The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401.

%p a:= n-> mul(ithprime(i), i=[n$n]):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 03 2020

%t Table[If[n==0,1,Prime[n]]^n,{n,0,10}]

%Y After a(0) = 1, same as A062457.

%Y Cf. A002024, A047993, A056239, A096771, A106529, A112798, A115720, A174090, A257990, A263297.

%Y Cf. A088218, A330394.

%K nonn

%O 0,2

%A _Gus Wiseman_, Apr 13 2019