

A307468


Cogrowth sequence for the Heisenberg group.


1



1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is the number of words of length 2n in the letters x,x^{1},y,y^{1} that equal the identity of the Heisenberg group H=<x,y  xz=zx, yz=zy, where z=xyx^{1}y^{1}>.
Also, this is the number of closed walks of length 2n on the square lattice enclosing algebraic area 0 [Béguin et al.].  Andrey Zabolotskiy, Sep 15 2021


LINKS

Table of n, a(n) for n=0..19.
Cédric Béguin, Alain Valette and Andrzej Zuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, Journal of Geometry and Physics, 21 (1997), 337356.
D. Lind and K, Schmidt, A survey of algebraic actions of the discrete Heisenberg group, arXiv:1502.06243 [math.DS], 2015; Russian Mathematical Surveys, 70:4 (2015), 77142.
J. Pantone, First 71 terms of the sequence.


FORMULA

Asymptotics: a(n) ~ (1/2) * 16^n * n^(2).


EXAMPLE

For n=1 the a(1)=4 words are x^{1}x, xx^{1}, y^{1}y, yy^{1}.


CROSSREFS

Related cogrowth sequences: Z A000984, Z^2 A002894, Z^3 A002896, (Z/kZ)^*2 for k = 2..5: A126869, A047098, A107026, A304979, Richard Thompson's group F A246877. The cogrowth sequences for BS(N,N) for N = 2..10 are A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.
Cf. A352838, A178106.
Sequence in context: A229647 A229646 A229645 * A202824 A046904 A030444
Adjacent sequences: A307465 A307466 A307467 * A307469 A307470 A307471


KEYWORD

nonn,walk


AUTHOR

Igor Pak, Apr 09 2019


STATUS

approved



