OFFSET
5,1
COMMENTS
a(n) is the number of reduced words in {x_0,x_0^{-1},x_1,x_1^{-1}}^* of length 2*n equal to the identity in F.
LINKS
Murray Elder, Table of n, a(n) for n = 5..23
M. Elder, A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group F, Groups, Complexity, Cryptology 4(2) (2012), 301-320.
S. Haagerup, U. Haagerup, M. Ramirez-Solano, A computational approach to the Thompson group F, Arxiv 2014
EXAMPLE
The length of the shortest relation in the group presentation is 10, there are 20 distinct cyclic permutations of this word and its inverse, and each one is a reduced trivial word of length 2*5, so a(5)=20.
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Murray Elder, Sep 06 2014
STATUS
approved