login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307018
Total number of parts of size 3 in the partitions of n into parts of size 2 and 3.
1
0, 0, 0, 1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, 25, 20, 25, 30, 25, 30, 36, 30, 36, 42, 36, 42, 49, 42, 49, 56, 49, 56, 64, 56, 64, 72, 64, 72, 81, 72, 81, 90, 81, 90, 100, 90, 100, 110, 100, 110, 121, 110, 121, 132
OFFSET
0,7
FORMULA
a(n+2) = A321202(n) - A114209(n+1).
a(3n+1) = A002620(n+2).
a(3n+2) = A002620(n+1).
a(3n+3) = A002620(n+2).
G.f.: x^3/((1+x)*(1+x+x^2)^2*(1-x)^3). - Alois P. Heinz, Mar 19 2019
a(n) = a(n-2) + 2*a(n-3) - 2*a(n-5) - a(n-6) + a(n-8). - G. C. Greubel, Apr 03 2019
a(n) = (6*n*(2 + n) + 8*(4 + 3*n)*cos(2*n*Pi/3) - 8*sqrt(3)*n*sin(2*n*Pi/3) - 5 - 27*(-1)^n)/216. - Stefano Spezia, Apr 21 2022
MATHEMATICA
LinearRecurrence[{0, 1, 2, 0, -2, -1, 0, 1}, {0, 0, 0, 1, 0, 1, 2, 1}, 80] (* G. C. Greubel, Apr 03 2019 *)
Table[(6n(2+n)-5-27(-1)^n+8(4+3n)Cos[2n Pi/3]-8Sqrt[3]n Sin[2n Pi/3])/216, {n, 0, 66}] (* Stefano Spezia, Apr 21 2022 *)
PROG
(PARI) my(x='x+O('x^80)); concat([0, 0, 0], Vec(x^3/((1-x^2)*(1-x^3)^2))) \\ G. C. Greubel, Apr 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); [0, 0, 0] cat Coefficients(R!( x^3/((1-x^2)*(1-x^3)^2) )); // G. C. Greubel, Apr 03 2019
(Sage) (x^3/((1-x^2)*(1-x^3)^2)).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
(GAP) a:=[0, 0, 0, 1, 0, 1, 2, 1];; for n in [9..80] do a[n]:=a[n-2]+2*a[n-3] -2*a[n-5]-a[n-6]+a[n-8]; od; a; # G. C. Greubel, Apr 03 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrew Ivashenko, Mar 19 2019
EXTENSIONS
More terms from Alois P. Heinz, Mar 19 2019
STATUS
approved