OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/24) * eta(q) * eta(q^8) * eta(q^12)^2 / (eta(q^3)^2 * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [-1, -1, 1, 0, -1, 1, -1, -1, 1, -1, -1, 0, -1, -1, 1, -1, -1, 1, -1, 0, 1, -1, -1, 0, ...].
a(n) = A137569(2*n).
EXAMPLE
G.f. = 1 - x - x^2 + 2*x^3 - x^4 - 2*x^5 + 4*x^6 - 2*x^7 - 4*x^8 + 8*x^9 + ...
G.f. = 1/q - q^23 - q^47 + 2*q^71 - q^95 - 2*q^119 + 4*q^143 - 2*q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x^4, x^4] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x^3]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^24 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)*eta(q^8)*eta(q^12)^2/(eta(q^3)^2*eta(q^4)*eta(q^24))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved