OFFSET
0,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-11/24) * eta(q) * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q^2) * eta(q^3)^2 * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [-1, 0, 1, -2, -1, 1, -1, -1, 1, 0, -1, 0, -1, 0, 1, -1, -1, 1, -1, -2, 1, 0, -1, 0, ...].
a(n) = - A137569(2*n + 1).
EXAMPLE
G.f. = 1 - x + x^3 - 3*x^4 + x^5 + 3*x^6 - 5*x^7 + 2*x^8 + 6*x^9 + ...
G.f. = q^11 - q^35 + q^83 - 3*q^107 + q^131 + 3*q^155 - 5*q^179 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) EllipticTheta[ 2, Pi/4, x^3] QPochhammer[ -x^2, x^4] QPochhammer[ x] / QPochhammer[ x^3]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A) * eta(x^12 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)*eta(q^4)^2*eta(q^6)*eta(q^24)/(eta(q^2)*eta(q^3)^2*eta(q^8)*eta(q^12))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved