login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263051
Expansion of f(-x) * f(x^2, x^10) / f(-x^3)^2 in powers of x where f(, ) is Ramanujan's general theta function.
2
1, -1, 0, 1, -3, 1, 3, -5, 2, 6, -10, 4, 10, -18, 7, 17, -30, 12, 28, -49, 19, 44, -78, 31, 69, -120, 47, 105, -182, 71, 156, -271, 106, 229, -396, 154, 333, -572, 222, 475, -817, 317, 673, -1151, 445, 943, -1608, 620, 1307, -2226, 857, 1798, -3053, 1173, 2455
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-11/24) * eta(q) * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q^2) * eta(q^3)^2 * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [-1, 0, 1, -2, -1, 1, -1, -1, 1, 0, -1, 0, -1, 0, 1, -1, -1, 1, -1, -2, 1, 0, -1, 0, ...].
a(n) = - A137569(2*n + 1).
EXAMPLE
G.f. = 1 - x + x^3 - 3*x^4 + x^5 + 3*x^6 - 5*x^7 + 2*x^8 + 6*x^9 + ...
G.f. = q^11 - q^35 + q^83 - 3*q^107 + q^131 + 3*q^155 - 5*q^179 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) EllipticTheta[ 2, Pi/4, x^3] QPochhammer[ -x^2, x^4] QPochhammer[ x] / QPochhammer[ x^3]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A) * eta(x^12 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)*eta(q^4)^2*eta(q^6)*eta(q^24)/(eta(q^2)*eta(q^3)^2*eta(q^8)*eta(q^12))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Cf. A137569.
Sequence in context: A225598 A126637 A110091 * A284130 A005474 A012264
KEYWORD
sign
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved