login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306625
Regular triangle T(n,k) = binomial(2*n-2*k,n-k)*((n+1)/k)*Sum_{k=0..floor((k-1)/2)} (-1)^k*binomial(2*k,k)*binomial(n+3*k-2*k,k-2*k-1), read by rows.
0
2, 6, 12, 24, 36, 80, 100, 150, 240, 560, 420, 660, 1020, 1680, 4032, 1764, 2940, 4620, 7224, 12096, 29568, 7392, 13104, 21280, 33320, 52416, 88704, 219648, 30888, 58212, 98280, 156870, 244800, 386496, 658944, 1647360, 128700, 257400, 452760, 742140, 1170540, 1821600, 2882880, 4942080, 12446720
OFFSET
1,1
LINKS
R. T. Eakin, A combinatorial partition of Mersenne numbers arising from spectroscopy, Journal of Number Theory, Volume 132, Issue 10, October 2012, Pages 2166-2183.
EXAMPLE
Triangle begins
2,
6, 12,
24, 36, 80,
100, 150, 240, 560,
420, 660, 1020, 1680, 4032,
1764, 2940, 4620, 7224, 12096, 29568,
...
PROG
(PARI) T(n, r) = binomial(2*n-2*r, n-r)*((n+1)/r)*sum(k=0, (r-1)\2, (-1)^k*binomial(2*r, k)*binomial(n+3*r-2*k, r-2*k-1));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); );
CROSSREFS
Sum of n-th row equals A000984(n)*A000225(n).
Right diagonal is A069723 starting at index 2.
Sequence in context: A067718 A210594 A307252 * A262986 A307559 A211978
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Mar 01 2019
STATUS
approved