login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307559 a(n) = floor(n/3)*(n - floor(n/3))*(n - floor(n/3) - 1). 0
0, 0, 2, 6, 12, 24, 40, 60, 90, 126, 168, 224, 288, 360, 450, 550, 660, 792, 936, 1092, 1274, 1470, 1680, 1920, 2176, 2448, 2754, 3078, 3420, 3800, 4200, 4620, 5082, 5566, 6072, 6624, 7200, 7800, 8450, 9126, 9828, 10584, 11368, 12180, 13050, 13950, 14880, 15872
(list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
a(n) is an upper bound for the irregularity of a graph with n vertices (see Theorem 3.2 of the Tavakoli et al. reference).
LINKS
M. Tavakoli, F. Rahbarnia, M. Mirzavaziri, A. R. Ashrafi, and I. Gutman, Extremely irregular graphs, Kragujevac J. Math., 37 (1), 2013, 135-139.
FORMULA
a(n) = 2*A200067(n).
G.f.: 2*x^3*(1+x)*(1+x^2) / ( (1+x+x^2)^2*(x-1)^4 ). - R. J. Mathar, Jul 22 2022
EXAMPLE
a(4) = floor(4/3)*(4 - floor(4/3))*(4-floor(4/3)-1) = 1*3*2 = 6.
MAPLE
a:=n->floor(n/3)*(n-floor(n/3))*(n-floor(n/3)-1): seq(a(n), n=1..50);
CROSSREFS
Cf. A200067.
Sequence in context: A307252 A306625 A262986 * A211978 A028923 A187272
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Apr 14 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 13:18 EDT 2024. Contains 376000 sequences. (Running on oeis4.)