The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307559 a(n) = floor(n/3)*(n - floor(n/3))*(n - floor(n/3) - 1). 0
 0, 0, 2, 6, 12, 24, 40, 60, 90, 126, 168, 224, 288, 360, 450, 550, 660, 792, 936, 1092, 1274, 1470, 1680, 1920, 2176, 2448, 2754, 3078, 3420, 3800, 4200, 4620, 5082, 5566, 6072, 6624, 7200, 7800, 8450, 9126, 9828, 10584, 11368, 12180, 13050, 13950, 14880, 15872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is an upper bound for the irregularity of a graph with n vertices (see Theorem 3.2 of the Tavakoli et al. reference). LINKS Table of n, a(n) for n=1..48. M. Tavakoli, F. Rahbarnia, M. Mirzavaziri, A. R. Ashrafi, and I. Gutman, Extremely irregular graphs, Kragujevac J. Math., 37 (1), 2013, 135-139. Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1). FORMULA a(n) = 2*A200067(n). G.f.: 2*x^3*(1+x)*(1+x^2) / ( (1+x+x^2)^2*(x-1)^4 ). - R. J. Mathar, Jul 22 2022 EXAMPLE a(4) = floor(4/3)*(4 - floor(4/3))*(4-floor(4/3)-1) = 1*3*2 = 6. MAPLE a:=n->floor(n/3)*(n-floor(n/3))*(n-floor(n/3)-1): seq(a(n), n=1..50); CROSSREFS Cf. A200067. Sequence in context: A307252 A306625 A262986 * A211978 A028923 A187272 Adjacent sequences: A307556 A307557 A307558 * A307560 A307561 A307562 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Apr 14 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 13:18 EDT 2024. Contains 376000 sequences. (Running on oeis4.)