|
|
A307557
|
|
Number of Motzkin meanders of length n with no level steps at odd level.
|
|
2
|
|
|
1, 2, 4, 9, 20, 47, 110, 264, 634, 1541, 3754, 9204, 22622, 55817, 138026, 342203, 849984, 2115245, 5271970, 13158944, 32886338, 82285031, 206101422, 516728937, 1296664512, 3256472235, 8184526438, 20584627358, 51805243138, 130456806425, 328703655114
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: ((1+t)/sqrt((t-1)*(4*t^2+t-1)) -1) / (2*t).
D-finite with recurrence (n+1)*a(n) +(-n-2)*a(n-1) +(-5*n+3)*a(n-2) +(n+4)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jan 25 2023
a(n) ~ sqrt(13 + 53/sqrt(17)) * (1 + sqrt(17))^n / (sqrt(Pi*n) * 2^(n + 3/2)). - Vaclav Kotesovec, Jun 24 2023
|
|
EXAMPLE
|
For n = 3 the a(3) = 9 paths are UUU, UUH, UUD, UDU, UDH, HUU, HUD, HHU, HHH.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|