login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349014
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x) / (1 - x) + x^2 * A(x)^2.
2
1, 1, 2, 4, 9, 20, 47, 111, 270, 663, 1656, 4174, 10636, 27308, 70651, 183902, 481436, 1266515, 3346793, 8879116, 23642034, 63156917, 169222939, 454660940, 1224650739, 3306338583, 8945780742, 24252558183, 65872671839, 179228552638, 488443704486
OFFSET
0,3
FORMULA
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} a(k) * (1 + a(n-k-2)).
a(n) ~ sqrt(1/r + (2-r)*s/(1-r)^2 + 2*s^2) / (2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.3495518575342322867499973927570340375314361958565... and s = 3.323404276086477625771682790702806844309937221726... are real roots of the system of equations 1 + r + r^2*s*(1/(1-r) + s) = s, r^2*(1/(1-r) + 2*s) = 1. - Vaclav Kotesovec, Nov 06 2021
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x]/(1 - x) + x^2 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[a[k] (1 + a[n - k - 2]), {k, 0, n - 2}]; Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 05 2021
STATUS
approved