login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Motzkin meanders of length n with no level steps at odd level.
2

%I #27 Nov 29 2024 18:00:16

%S 1,2,4,9,20,47,110,264,634,1541,3754,9204,22622,55817,138026,342203,

%T 849984,2115245,5271970,13158944,32886338,82285031,206101422,

%U 516728937,1296664512,3256472235,8184526438,20584627358,51805243138,130456806425,328703655114

%N Number of Motzkin meanders of length n with no level steps at odd level.

%C A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.

%H Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Algorithmica (2019).

%F G.f.: ((1+t)/sqrt((t-1)*(4*t^2+t-1)) -1) / (2*t).

%F D-finite with recurrence (n+1)*a(n) +(-n-2)*a(n-1) +(-5*n+3)*a(n-2) +(n+4)*a(n-3) +2*(2*n-5)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2023

%F a(n) ~ sqrt(13 + 53/sqrt(17)) * (1 + sqrt(17))^n / (sqrt(Pi*n) * 2^(n + 3/2)). - _Vaclav Kotesovec_, Jun 24 2023

%F a(n) = (A026569(n) + A026569(n+1))/2. - _Mark van Hoeij_, Nov 29 2024

%e For n = 3 the a(3) = 9 paths are UUU, UUH, UUD, UDU, UDH, HUU, HUD, HHU, HHH.

%Y Cf. A307555.

%K nonn

%O 0,2

%A _Andrei Asinowski_, Apr 14 2019