login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187272 a(n) = (n/4)*2^(n/2)*((1+sqrt(2))^2 + (-1)^n*(1-sqrt(2))^2). 6
0, 2, 6, 12, 24, 40, 72, 112, 192, 288, 480, 704, 1152, 1664, 2688, 3840, 6144, 8704, 13824, 19456, 30720, 43008, 67584, 94208, 147456, 204800, 319488, 442368, 688128, 950272, 1474560, 2031616, 3145728, 4325376, 6684672, 9175040, 14155776, 19398656, 29884416, 40894464, 62914560, 85983232 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Lemma 6 (p. 228).

Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).

FORMULA

From Bruno Berselli, Mar 22 2011: (Start)

G.f.: 2*x*(1+x)*(1+2*x)/(1-2*x^2)^2.

a(n)/a(n-2) = 2*n/(n-2). (End)

a(2*n) = 3*n*2^n, a(2*n+1) = (2*n+1)*2^(n+1). - Andrew Howroyd, Mar 28 2016

MAPLE

R:=(b, n)-> expand(simplify( (n/4)*b^(n/2)*((1+sqrt(b))^2+(-1)^n*(1-sqrt(b))^2) ));

[seq(R(2, n), n=0..100)];

MATHEMATICA

CoefficientList[Series[2 x (1 + x) (1 + 2 x) / (1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)

PROG

(PARI) x='x+O('x^30); concat([0], Vec(2*x*(1+x)*(1+2*x)/(1-2*x^2)^2)) \\ G. C. Greubel, Nov 28 2017

(MAGMA) [Round((n/4)*2^(n/2)*((1+Sqrt(2))^2 + (-1)^n*(1-Sqrt(2))^2)): n in [0..30]]; // G. C. Greubel, Nov 28 2017

CROSSREFS

Cf. A187273, A187274, A187275.

Cf. A007055, A007056, A007057, A007058.

Sequence in context: A307559 A211978 A028923 * A001116 A002336 A030625

Adjacent sequences:  A187269 A187270 A187271 * A187273 A187274 A187275

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 04:11 EDT 2019. Contains 324369 sequences. (Running on oeis4.)