login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187272
a(n) = (n/4)*2^(n/2)*((1+sqrt(2))^2 + (-1)^n*(1-sqrt(2))^2).
6
0, 2, 6, 12, 24, 40, 72, 112, 192, 288, 480, 704, 1152, 1664, 2688, 3840, 6144, 8704, 13824, 19456, 30720, 43008, 67584, 94208, 147456, 204800, 319488, 442368, 688128, 950272, 1474560, 2031616, 3145728, 4325376, 6684672, 9175040, 14155776, 19398656, 29884416, 40894464, 62914560, 85983232
OFFSET
0,2
LINKS
R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Lemma 6 (p. 228).
FORMULA
From Bruno Berselli, Mar 22 2011: (Start)
G.f.: 2*x*(1+x)*(1+2*x)/(1-2*x^2)^2.
a(n)/a(n-2) = 2*n/(n-2). (End)
a(2*n) = 3*n*2^n, a(2*n+1) = (2*n+1)*2^(n+1). - Andrew Howroyd, Mar 28 2016
MAPLE
R:=(b, n)-> expand(simplify( (n/4)*b^(n/2)*((1+sqrt(b))^2+(-1)^n*(1-sqrt(b))^2) ));
[seq(R(2, n), n=0..100)];
MATHEMATICA
CoefficientList[Series[2 x (1 + x) (1 + 2 x) / (1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(2*x*(1+x)*(1+2*x)/(1-2*x^2)^2)) \\ G. C. Greubel, Nov 28 2017
(Magma) [Round((n/4)*2^(n/2)*((1+Sqrt(2))^2 + (-1)^n*(1-Sqrt(2))^2)): n in [0..30]]; // G. C. Greubel, Nov 28 2017
(Python)
def A187272(n): return (n<<(n+1>>1) if n&1 else 3*n<<(n-2>>1)) if n else 0 # Chai Wah Wu, Feb 18 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 07 2011
STATUS
approved