login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187275 a(n) = (n/4)*5^(n/2)*((1+sqrt(5))^2+(-1)^n*(1-sqrt(5))^2). 5
0, 5, 30, 75, 300, 625, 2250, 4375, 15000, 28125, 93750, 171875, 562500, 1015625, 3281250, 5859375, 18750000, 33203125, 105468750, 185546875, 585937500, 1025390625, 3222656250, 5615234375, 17578125000, 30517578125, 95214843750, 164794921875, 512695312500, 885009765625, 2746582031250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Lemma 1.

Index entries for linear recurrences with constant coefficients, signature (0,10,0,-25).

FORMULA

a(n) = 10*a(n-2) - 25*a(n-4). - Colin Barker, Jul 25 2013

G.f.: 5*x*(x+1)*(5*x+1) / (5*x^2-1)^2. - Colin Barker, Jul 25 2013

a(2*n) = 6*n*5^n, a(2*n+1) = (2*n+1)*5^(n+1). - Andrew Howroyd, Mar 28 2016

MAPLE

See A187272.

MATHEMATICA

LinearRecurrence[{0, 10, 0, -25}, {0, 5, 30, 75}, 30] (* Vincenzo Librandi, Mar 29 2016 *)

PROG

(MAGMA) /* By definition: */ Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); [Integers()!((n/4)*r^n*((1+r)^2+(-1)^n*(1-r)^2)): n in [0..30]]; // Bruno Berselli, Mar 29 2016

(MAGMA) I:=[0, 5, 30, 75]; [n le 4 select I[n] else 10*Self(n-2)-25*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 29 2016

CROSSREFS

Sequence in context: A044463 A270811 A152745 * A273480 A164015 A128302

Adjacent sequences:  A187272 A187273 A187274 * A187276 A187277 A187278

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 10:10 EDT 2019. Contains 324351 sequences. (Running on oeis4.)