login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187276
Number of d+/d- diagonally convex polyominoes with n cells.
2
1, 2, 6, 19, 61, 196, 630, 2024, 6499, 20860, 66941, 214797, 689201, 2211347, 7095226, 22765414, 73044113, 234366327, 751978494, 2412768983, 7741517800, 24839137696, 79697907919, 255715662623
OFFSET
1,2
COMMENTS
A polyomino is d+ [d-] convex if the intersection of its interior with any line of slope 1 [-1] through the centers of the cells is connected.
REFERENCES
M. Bousquet-Mélou and R. Brak, "Exactly Solved Models", in A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, pp. 46 & 76.
EXAMPLE
A(5) = 61 = A001168(5) - 2, omitting two of the orientations of the V pentomino.
MATHEMATICA
ab[n_, m_, q_]:=Sum[q[n-m-r, k], {r, 1, m}, {k, m+1-r, n-m-r}]
bb[n_, m_, q_]:=Sum[q[n-m-r, m-r], {r, 1, m-1}]+Sum[q[n-m-r, k], {r, 1, m-1}, {k, m-r, n-m-r}]
cb[n_, m_, q_]:=Sum[q[n-m-r, m-1-r], {r, 1, m-2}]
a[n_, m_]:=0/; n<=1||m<=0
a[n_, m_]:=a[n, m]=Sum[(k-m)p[n-m, k], {k, m+1, n-m}]+ab[n, m, b]+2ab[n, m, c]+Sum[(r-1)c[n-m-r, m+1-r], {r, 2, m}]
b[1, 1]=1;
b[n_, m_]:=0/; n<=1||m<=0
b[n_, m_]:=b[n, m]=2Sum[p[n-m, k], {k, m, n-m}]+bb[n, m, b]+2bb[n, m, c]+2Sum[(r-1)c[n-m-r, m-r], {r, 2, m-1}]
c[n_, m_]:=0/; n<=1||m<=0
c[n_, m_]:=c[n, m]=p[n-m, m-1]+cb[n, m, b]+2cb[n, m, c]+Sum[(r-1)c[n-m-r, m-1-r], {r, 2, m-2}]
p[n_, m_]:=a[n, m]+b[n, m]+c[n, m]
Table[Sum[p[n, m], {m, (n+1)/2}], {n, 20}]
CROSSREFS
Cf. A001168 (fixed polyominoes), A001169 (row-convex polyominoes).
Sequence in context: A371708 A318127 A001169 * A022041 A018906 A014010
KEYWORD
nonn
AUTHOR
David Bevan, Mar 07 2011
EXTENSIONS
Typo in example corrected by David Bevan, Mar 23 2013
STATUS
approved