login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318127
Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).
5
1, 2, 6, 19, 61, 191, 588, 1785, 5351, 15868, 46628, 135921, 393318, 1130538, 3229753, 9175347, 25931605, 72936434, 204223348, 569427145, 1581458917, 4375905243, 12065914843, 33160240020, 90848002909, 248154744196, 675932128695, 1836182233332, 4975249827916, 13447775233746
OFFSET
0,2
COMMENTS
Binomial transform of A006906.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: (1/(1 - x))*exp(Sum_{k>=1} Sum_{j>=1} j^k*x^(k*j)/(k*(1 - x)^(k*j))).
a(n) = Sum_{k=0..n} binomial(n,k)*A006906(k).
a(n) ~ c * (1 + 3^(1/3))^n, where c = 97923.037496367052161042295948902147352859984491653037730624387144966464... = 1/((3^(1/3) - 1) * (3^(2/3) - 2)) * Product_{k>=4} 1/(1 - k/3^(k/3)). - Vaclav Kotesovec, Aug 19 2018
MAPLE
a:=series(1/(1-x)*mul(1/(1-k*x^k/(1-x)^k), k=1..100), x=0, 30): seq(coeff(a, x, n), n=0..29); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 29; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[j^k x^(k j)/(k (1 - x)^(k j)), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[Binomial[n, k] Total[Times @@@ IntegerPartitions[k]], {k, 0, n}], {n, 0, 29}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 18 2018
STATUS
approved