login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318127 Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k). 5
1, 2, 6, 19, 61, 191, 588, 1785, 5351, 15868, 46628, 135921, 393318, 1130538, 3229753, 9175347, 25931605, 72936434, 204223348, 569427145, 1581458917, 4375905243, 12065914843, 33160240020, 90848002909, 248154744196, 675932128695, 1836182233332, 4975249827916, 13447775233746 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A006906.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..2000

N. J. A. Sloane, Transforms

FORMULA

G.f.: (1/(1 - x))*exp(Sum_{k>=1} Sum_{j>=1} j^k*x^(k*j)/(k*(1 - x)^(k*j))).

a(n) = Sum_{k=0..n} binomial(n,k)*A006906(k).

a(n) ~ c * (1 + 3^(1/3))^n, where c = 97923.037496367052161042295948902147352859984491653037730624387144966464... = 1/((3^(1/3) - 1) * (3^(2/3) - 2)) * Product_{k>=4} 1/(1 - k/3^(k/3)). - Vaclav Kotesovec, Aug 19 2018

MAPLE

a:=series(1/(1-x)*mul(1/(1-k*x^k/(1-x)^k), k=1..100), x=0, 30): seq(coeff(a, x, n), n=0..29); # Paolo P. Lava, Apr 02 2019

MATHEMATICA

nmax = 29; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 29; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[j^k x^(k j)/(k (1 - x)^(k j)), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]

Table[Sum[Binomial[n, k] Total[Times @@@ IntegerPartitions[k]], {k, 0, n}], {n, 0, 29}]

CROSSREFS

Cf. A006906, A218481, A294500.

Sequence in context: A208481 A052544 A204200 * A001169 A187276 A022041

Adjacent sequences:  A318124 A318125 A318126 * A318128 A318129 A318130

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 02:32 EDT 2019. Contains 326260 sequences. (Running on oeis4.)