OFFSET
0,2
COMMENTS
Binomial transform of A006906.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
N. J. A. Sloane, Transforms
FORMULA
G.f.: (1/(1 - x))*exp(Sum_{k>=1} Sum_{j>=1} j^k*x^(k*j)/(k*(1 - x)^(k*j))).
a(n) = Sum_{k=0..n} binomial(n,k)*A006906(k).
a(n) ~ c * (1 + 3^(1/3))^n, where c = 97923.037496367052161042295948902147352859984491653037730624387144966464... = 1/((3^(1/3) - 1) * (3^(2/3) - 2)) * Product_{k>=4} 1/(1 - k/3^(k/3)). - Vaclav Kotesovec, Aug 19 2018
MAPLE
a:=series(1/(1-x)*mul(1/(1-k*x^k/(1-x)^k), k=1..100), x=0, 30): seq(coeff(a, x, n), n=0..29); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 29; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[j^k x^(k j)/(k (1 - x)^(k j)), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[Binomial[n, k] Total[Times @@@ IntegerPartitions[k]], {k, 0, n}], {n, 0, 29}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 18 2018
STATUS
approved