login
A014010
Linear recursion relative of Shallit sequence S(2,6).
2
2, 6, 19, 61, 196, 630, 2026, 6516, 20957, 67403, 216786, 697242, 2242518, 7212542, 23197479, 74609345, 239963764, 771788146, 2482278710, 7983677420, 25677658553, 82586271223, 265619709074, 854304581182, 2747673807690, 8837259590742, 28423008894139
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
Jeffrey Shallit, Problem B-686, Fib. Quart., 29 (1991), 85.
FORMULA
a(n) = 3*a(n-1) + a(n-2) - a(n-3) + a(n-4) - 3*a(n-5).
G.f.: ( 2-x^2-2*x^4 ) / ( (x-1)*(3*x^4+2*x^3+3*x^2+2*x-1) ).
MATHEMATICA
LinearRecurrence[{3, 1, -1, 1, -3}, {2, 6, 19, 61, 196}, 30] (* Harvey P. Dale, Apr 21 2016 *)
PROG
(PARI) a2n=concat([ 2, 6, 19, 61, 196 ], vector(25)); a(n)=a2n[ n+1 ]; for(n=5, 29, a2n[ n+1 ]=3*a(n-1) + a(n-2) - a(n-3) + a(n-4) - 3*a(n-5))
(PARI) Vec((2-x^2-2*x^4)/((x-1)*(3*x^4+2*x^3+3*x^2+2*x-1)) + O(x^40)) \\ Colin Barker, Aug 09 2016
CROSSREFS
There has been some confusion between A018906 and A014010. I think the descriptions are correct now, thanks to Michael Somos.
Different from A022041.
Sequence in context: A187276 A022041 A018906 * A022015 A138747 A052975
KEYWORD
nonn,easy
AUTHOR
STATUS
approved