1,1
The next term has 99 digits.
Table of n, a(n) for n=1..6.
Index entries for sequences related to Egyptian fractions
Pi -3 = Sum_{k>=1} (-1)^(k+1)/a(k) = 0.14159...; a(n) = (-1)^(n+1)*u(n) where u(1)=7, u(n) = trunc(1/(Pi - 3 - Sum_{k=1..n-1} 1/u(k))) and trunc(x) = floor(x) if x >= 0, trunc(x) = ceiling(x) if x < 0.
1/(Pi - 3 - 1/7 + 1/790) = 749896.4427... hence a(3)=749896.
Sequence in context: A020470 A182282 A171245 * A001467 A342836 A338968
Adjacent sequences: A014010 A014011 A014012 * A014014 A014015 A014016
nonn
Simon Plouffe
Title correction by Stanislav Sykora, May 05 2012
approved