login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014008
Pisot sequence E(10,22), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
1
10, 22, 48, 105, 230, 504, 1104, 2418, 5296, 11600, 25408, 55652, 121896, 266992, 584800, 1280904, 2805600, 6145184, 13459968, 29481744, 64574688, 141439744, 309799425, 678562341, 1486274065, 3255427634, 7130454154, 15618033069, 34208614441, 74928084529
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Known not to satisfy any linear recurrence.
a(n) = floor(r*s^n+1/2), where r = 9.99722327450628273875296... and s = 2.190327955501779639125414331914733218563545664874673678481473094... . - Benoit Cloitre, Apr 21 2003
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 10, 22) \\ Colin Barker, Jul 29 2016
CROSSREFS
Sequence in context: A179877 A216048 A079861 * A219744 A246419 A039315
KEYWORD
nonn
AUTHOR
STATUS
approved