login
A306624
Expansion of e.g.f. exp(Sum_{k=1..9} x^k).
2
1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 55312291, 744239541, 10793656633, 167689950013, 2775839905203, 48726598412521, 903159189729121, 17607070923233553, 359702718305842243, 7673827033741108573, 171586828999546057641, 3999150173195168500741
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..min(9,n)} k*a(n-k)/(n-k)! for n > 0.
MATHEMATICA
m=21; CoefficientList[Series[Exp[Sum[x^k, {k, 1, 9}]], {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Mar 01 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, 9, x^k))))
CROSSREFS
Column 9 of A293669.
Sequence in context: A193932 A193933 A306623 * A293125 A000262 A367751
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2019
STATUS
approved