login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193933
E.g.f. A(x) = exp(x+x^2+x^3+x^4+x^5+x^6+x^7).
2
1, 1, 3, 13, 73, 501, 4051, 37633, 354033, 3870793, 46240291, 597877941, 8298856633, 122751616573, 1921371570483, 31604885804521, 552755907700321, 10156326950561553, 195421314725788483, 3926668816722630493, 82199760488718697641, 1789438454541407131141
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{j=1..7} x^j).
a(n) = n!*sum(k=1..n, sum(i=0..(n-k)/7, (-1)^i*binomial(k,k-i)*binomial(n-7*i-1,k-1))/k!), n>0, a(0)=1.
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=1..min(n, 7)))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 29 2017
MATHEMATICA
terms = 22;
CoefficientList[E^Total[x^Range[7]] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Nov 11 2020 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else n!*sum(sum((-1)^i*binomial(k, k-i)*binomial(n-7*i-1, k-1), i, 0, (n-k)/7)/k!, k, 1, n);
makelist(a(n), n, 0, 20);
CROSSREFS
Column k=7 of A293669.
Sequence in context: A367757 A293197 A193932 * A306623 A306624 A293125
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Aug 09 2011
STATUS
approved