login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193931
E.g.f. A(x) = exp(x+x^2+x^3+x^4+x^5).
3
1, 1, 3, 13, 73, 501, 3331, 27553, 253233, 2540233, 27340291, 309811701, 3843476473, 50560182973, 701098196163, 10205952248521, 155809733115361, 2506135027165713, 42013633806350083, 732584456250306013, 13270900741926553641, 249625454707702681861
OFFSET
0,3
LINKS
FORMULA
a(n)=n!*sum(k=1..n, sum(i=0..(n-k)/5, (-1)^i*binomial(k,k-i)*binomial(n-5*i-1,k-1))/k!), n>0, a(0)=1.
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + (1+x+x^2+x^3+x^4)/(k+1)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 27 2013
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=1..min(n, 5)))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 29 2017
PROG
(Maxima)
a(n):=if n=0 then 1 else n!*sum(sum((-1)^i*binomial(k, k-i)*binomial(n-5*i-1, k-1), i, 0, (n-k)/5)/k!, k, 1, n);
CROSSREFS
Sequence in context: A205776 A132846 A293196 * A367757 A293197 A193932
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Aug 09 2011
STATUS
approved