login
A293125
Expansion of e.g.f.: exp(-x/(1+x)).
4
1, -1, 3, -13, 73, -501, 4051, -37633, 394353, -4596553, 58941091, -824073141, 12470162233, -202976401213, 3535017524403, -65573803186921, 1290434218669921, -26846616451246353, 588633468315403843, -13564373693588558173, 327697927886085654441
OFFSET
0,3
COMMENTS
For n >= 1, gives row sums of A008297, triangle of Lah numbers. - Daniel Forgues, Oct 12 2019
LINKS
Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
FORMULA
a(n) = (-1)^n * A000262(n).
From Vaclav Kotesovec, Sep 30 2017: (Start)
a(n) = -(2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2).
a(n) ~ (-1)^n * n^(n-1/4) * exp(-1/2 + 2*sqrt(n) - n) / sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)).
(End)
a(n) = (-1)^n *n! * Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - G. C. Greubel, Dec 04 2018
a(n) = (-1)^n*n!*hypergeom([1 - n], [2], -1) for n > 0. - Peter Luschny, Oct 13 2019
MATHEMATICA
CoefficientList[Series[E^(-x/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
a[n_] := If[n == 0, 1, (-1)^n n! Hypergeometric1F1[1 - n, 2, -1]];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Oct 13 2019 )
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(-x/(1+x))))
(Magma) [1] cat [(-1)^n*Factorial(n)*(&+[Binomial(n-1, j)/Factorial(j+1): j in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Dec 04 2018
(Sage) [1] + [(-1)^n*factorial(n)*sum(binomial(n-1, j)/factorial(j+1) for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Dec 04 2018
(GAP) a:=[-1, 3];; for n in [3..25] do a[n]:=-(2*n-1)*a[n-1]-(n-2)*(n-1)*a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Dec 04 2018
CROSSREFS
Column k=0 of A293134.
Sequence in context: A193933 A306623 A306624 * A000262 A367751 A367749
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 30 2017
STATUS
approved