login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293125
Expansion of e.g.f.: exp(-x/(1+x)).
4
1, -1, 3, -13, 73, -501, 4051, -37633, 394353, -4596553, 58941091, -824073141, 12470162233, -202976401213, 3535017524403, -65573803186921, 1290434218669921, -26846616451246353, 588633468315403843, -13564373693588558173, 327697927886085654441
OFFSET
0,3
COMMENTS
For n >= 1, gives row sums of A008297, triangle of Lah numbers. - Daniel Forgues, Oct 12 2019
LINKS
Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
FORMULA
a(n) = (-1)^n * A000262(n).
From Vaclav Kotesovec, Sep 30 2017: (Start)
a(n) = -(2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2).
a(n) ~ (-1)^n * n^(n-1/4) * exp(-1/2 + 2*sqrt(n) - n) / sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)).
(End)
a(n) = (-1)^n *n! * Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - G. C. Greubel, Dec 04 2018
a(n) = (-1)^n*n!*hypergeom([1 - n], [2], -1) for n > 0. - Peter Luschny, Oct 13 2019
MATHEMATICA
CoefficientList[Series[E^(-x/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
a[n_] := If[n == 0, 1, (-1)^n n! Hypergeometric1F1[1 - n, 2, -1]];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Oct 13 2019 )
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(-x/(1+x))))
(Magma) [1] cat [(-1)^n*Factorial(n)*(&+[Binomial(n-1, j)/Factorial(j+1): j in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Dec 04 2018
(Sage) [1] + [(-1)^n*factorial(n)*sum(binomial(n-1, j)/factorial(j+1) for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Dec 04 2018
(GAP) a:=[-1, 3];; for n in [3..25] do a[n]:=-(2*n-1)*a[n-1]-(n-2)*(n-1)*a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Dec 04 2018
CROSSREFS
Column k=0 of A293134.
Sequence in context: A193933 A306623 A306624 * A000262 A367751 A367749
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 30 2017
STATUS
approved