login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: exp(-x/(1+x)).
4

%I #34 Mar 08 2024 12:00:21

%S 1,-1,3,-13,73,-501,4051,-37633,394353,-4596553,58941091,-824073141,

%T 12470162233,-202976401213,3535017524403,-65573803186921,

%U 1290434218669921,-26846616451246353,588633468315403843,-13564373693588558173,327697927886085654441

%N Expansion of e.g.f.: exp(-x/(1+x)).

%C For n >= 1, gives row sums of A008297, triangle of Lah numbers. - _Daniel Forgues_, Oct 12 2019

%H Seiichi Manyama, <a href="/A293125/b293125.txt">Table of n, a(n) for n = 0..444</a>

%H Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, <a href="https://arxiv.org/abs/1812.00316">A Conjectured Integer Sequence Arising From the Exponential Integral</a>, arXiv:1812.00316 [math.NT], 2018.

%F a(n) = (-1)^n * A000262(n).

%F From _Vaclav Kotesovec_, Sep 30 2017: (Start)

%F a(n) = -(2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2).

%F a(n) ~ (-1)^n * n^(n-1/4) * exp(-1/2 + 2*sqrt(n) - n) / sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)).

%F (End)

%F a(n) = (-1)^n *n! * Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - _G. C. Greubel_, Dec 04 2018

%F a(n) = (-1)^n*n!*hypergeom([1 - n], [2], -1) for n > 0. - _Peter Luschny_, Oct 13 2019

%t CoefficientList[Series[E^(-x/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Sep 30 2017 *)

%t a[n_] := If[n == 0, 1, (-1)^n n! Hypergeometric1F1[1 - n, 2, -1]];

%t Table[a[n], {n, 0, 20}] (* _Peter Luschny_, Oct 13 2019 )

%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(-x/(1+x))))

%o (Magma) [1] cat [(-1)^n*Factorial(n)*(&+[Binomial(n-1, j)/Factorial(j+1): j in [0..n-1]]): n in [1..30]]; // _G. C. Greubel_, Dec 04 2018

%o (Sage) [1] + [(-1)^n*factorial(n)*sum(binomial(n-1,j)/factorial(j+1) for j in (0..n-1)) for n in (1..30)] # _G. C. Greubel_, Dec 04 2018

%o (GAP) a:=[-1,3];; for n in [3..25] do a[n]:=-(2*n-1)*a[n-1]-(n-2)*(n-1)*a[n-2]; od; Concatenation([1], a); # _G. C. Greubel_, Dec 04 2018

%Y Column k=0 of A293134.

%Y Cf. A000262, A008297.

%K sign

%O 0,3

%A _Seiichi Manyama_, Sep 30 2017