login
A306623
Expansion of e.g.f. exp(Sum_{k=1..8} x^k).
2
1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4233673, 51683491, 684364341, 9755819833, 148749428413, 2411870539443, 41369113878121, 746931540551521, 14128241450715153, 281805883597349443, 5880463849670410333, 128050607992266620841, 2903233047048502113541
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..min(8,n)} k*a(n-k)/(n-k)! for n > 0.
MATHEMATICA
m=21; CoefficientList[Series[Exp[Sum[x^k, {k, 1, 8}]], {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Mar 01 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, 8, x^k))))
CROSSREFS
Column 8 of A293669.
Sequence in context: A293197 A193932 A193933 * A306624 A293125 A000262
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2019
STATUS
approved