

A306471


Number of ways to write n as C(2w+1,2) + C(x+2,3) + C(y+3,4) + C(z+4,5) with w,x,y,z nonnegative integers, where C(n,k) denotes the binomial coefficient n!/(k!*(nk)!).


6



1, 3, 3, 2, 4, 6, 5, 4, 4, 5, 7, 8, 6, 4, 5, 8, 8, 5, 4, 6, 7, 10, 10, 6, 6, 12, 13, 8, 7, 7, 6, 11, 9, 4, 3, 8, 16, 12, 8, 9, 9, 13, 14, 10, 7, 9, 18, 12, 6, 5, 4, 11, 10, 4, 2, 5, 19, 21, 11, 9, 13, 20, 16, 9, 6, 8, 17, 17, 4, 2, 9, 20, 17, 6, 9, 9, 15, 23, 14, 9, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture 1: a(n) > 1 for all n > 0.
We have verified a(n) > 0 for all n = 0..5*10^6.
Conjecture 2: For each r = 0, 1, any positive integer can be written as w^2 + C(x,3) + C(y,4) + C(z,5), where w,x,y,z are nonnegative integers with w  r even.


LINKS



EXAMPLE

a(0) = 1 with 0 = C(1,2) + C(2,3) + C(3,4) + C(4,5).
a(3) = 2 with 3 = C(3,2) + C(2,3) + C(3,4) + C(4,5) = C(1,2) + C(3,3) + C(4,4) + C(5,5).
a(54) = 2 with 54 = C(3,2) + C(7,3) + C(6,4) + C(5,5) = C(3,2) + C(5,3) + C(7,4) + C(6,5).
a(69) = 1 with 69 = C(3,2) + C(5,3) + C(7,4) + C(7,5) = C(3,2) + C(5,3) + C(3,4) + C(8,5).


MATHEMATICA

f[m_, n_]:=f[m, n]=Binomial[m+n1, m];
HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1], 4]==1;
tab={}; Do[r=0; Do[If[f[5, z]>n, Goto[cc]]; Do[If[f[4, y]>nf[5, z], Goto[bb]]; Do[If[f[3, x]>nf[5, z]f[4, y], Goto[aa]]; If[HQ[nf[5, z]f[4, y]f[3, x]], r=r+1], {x, 0, nf[5, z]f[4, y]}]; Label[aa], {y, 0, nf[5, z]}]; Label[bb], {z, 0, n}]; Label[cc]; tab=Append[tab, r], {n, 0, 80}]; Print[tab]


CROSSREFS

Cf. A000217, A000290, A000292, A000332, A000389, A000797, A014105, A262813, A306460, A306462, A306477.


KEYWORD

nonn


AUTHOR



STATUS

approved



