OFFSET
0,2
COMMENTS
Conjecture 1: a(n) > 1 for all n > 0.
We have verified a(n) > 0 for all n = 0..5*10^6.
Conjecture 2: For each r = 0, 1, any positive integer can be written as w^2 + C(x,3) + C(y,4) + C(z,5), where w,x,y,z are nonnegative integers with w - r even.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
EXAMPLE
a(0) = 1 with 0 = C(1,2) + C(2,3) + C(3,4) + C(4,5).
a(3) = 2 with 3 = C(3,2) + C(2,3) + C(3,4) + C(4,5) = C(1,2) + C(3,3) + C(4,4) + C(5,5).
a(54) = 2 with 54 = C(3,2) + C(7,3) + C(6,4) + C(5,5) = C(3,2) + C(5,3) + C(7,4) + C(6,5).
a(69) = 1 with 69 = C(3,2) + C(5,3) + C(7,4) + C(7,5) = C(3,2) + C(5,3) + C(3,4) + C(8,5).
MATHEMATICA
f[m_, n_]:=f[m, n]=Binomial[m+n-1, m];
HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1], 4]==1;
tab={}; Do[r=0; Do[If[f[5, z]>n, Goto[cc]]; Do[If[f[4, y]>n-f[5, z], Goto[bb]]; Do[If[f[3, x]>n-f[5, z]-f[4, y], Goto[aa]]; If[HQ[n-f[5, z]-f[4, y]-f[3, x]], r=r+1], {x, 0, n-f[5, z]-f[4, y]}]; Label[aa], {y, 0, n-f[5, z]}]; Label[bb], {z, 0, n}]; Label[cc]; tab=Append[tab, r], {n, 0, 80}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 17 2019
STATUS
approved