login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306473
a(n) is the maximum number of distinct palindromic not necessarily contiguous subwords over all binary words of length n.
0
1, 2, 3, 5, 7, 10, 14, 18, 25, 32, 43, 54, 72, 90, 119, 148, 195, 242, 318, 394
OFFSET
1,2
FORMULA
Conjectures from Colin Barker, Feb 18 2019: (Start)
G.f.: x*(1 + x + x^3 + x^6 - x^7 + x^8) / ((1 - x)*(1 - x^2 - x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n>9.
(End)
EXAMPLE
The word 0110 has the distinct palindromes (0, 010, 0110, 1, 11) and no other 4-length word has more, so a(4)=5.
CROSSREFS
Sequence in context: A130053 A177277 A025488 * A175846 A088585 A304712
KEYWORD
nonn,base,more
AUTHOR
Lars Blomberg, Feb 18 2019
STATUS
approved