login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175846
Partial sums of ceiling(n^2/15).
1
0, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 41, 51, 63, 77, 92, 110, 130, 152, 177, 204, 234, 267, 303, 342, 384, 430, 479, 532, 589, 649, 714, 783, 856, 934, 1016, 1103, 1195, 1292, 1394, 1501, 1614, 1732, 1856, 1986, 2121, 2263, 2411, 2565, 2726, 2893
OFFSET
0,3
COMMENTS
There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(n^2 + n + 28)/90).
a(n) = floor((n+1)*(2*n^2 + n + 56)/90).
a(n) = ceiling((2*n^3 + 3*n^2 + 57*n)/90).
a(n) = a(n-15) + (n+1)*(n-15) + 92.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + a(n-7) - a(n-8) + 2*a(n-9) - a(n-10). - R. J. Mathar, Mar 11 2012
G.f.: x*(x+1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x-1)^4*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, Oct 26 2012
EXAMPLE
a(15) = 0 + 1 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 7 + 9 + 10 + 12 + 14 + 15 = 92.
MAPLE
seq(round((2*n+1)*(n^2+n+28)/90), n=0..50)
PROG
(Magma) [Round((2*n+1)*(n^2+n+28)/90): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
(PARI) a(n)=(n+1)*(2*n^2+n+56)\90 \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
Sequence in context: A177277 A025488 A306473 * A088585 A304712 A175842
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved