login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306472
a(n) = 37*27^n.
1
37, 999, 26973, 728271, 19663317, 530909559, 14334558093, 387033068511, 10449892849797, 282147106944519, 7617971887502013, 205685240962554351, 5553501505988967477, 149944540661702121879, 4048502597865957290733, 109309570142380846849791, 2951358393844282864944357
OFFSET
0,1
COMMENTS
x = a(n) and y = A002042(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 3^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
FORMULA
O.g.f.: 37/(1 - 27*x).
E.g.f.: 37*exp(27*x).
a(n) = 27*a(n-1) for n > 0.
a(n) = 37*A009971(n).
EXAMPLE
For a(0) = 37 and A002042(0) = 7, 37^2 + 3 = 1372 = 4*7^3.
MAPLE
a:=n->37*27^n: seq(a(n), n=0..20);
MATHEMATICA
37*27^Range[0, 20]
PROG
(GAP) List([0..20], n->37*27^n);
(Magma) [37*27^n: n in [0..20]];
(PARI) a(n) = 37*27^n;
CROSSREFS
Cf. A002042 (7*4^n), A009971 (27^n), A000290 (n^2), A000578 (n^3).
Sequence in context: A103724 A332857 A237857 * A014935 A124155 A218764
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Feb 18 2019
STATUS
approved