login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305848
Solution b() of the complementary equation a(n) + b(n) = 5n, where a(1) = 1. See Comments.
3
4, 8, 12, 15, 19, 23, 26, 30, 34, 37, 41, 44, 48, 52, 55, 59, 63, 66, 70, 73, 77, 81, 84, 88, 92, 95, 99, 102, 106, 110, 113, 117, 120, 124, 128, 131, 135, 139, 142, 146, 149, 153, 157, 160, 164, 168, 171, 175, 178, 182, 186, 189, 193, 196, 200, 204, 207
OFFSET
1,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial value. Let x = (5 - sqrt(5))/2 and y = (5 + sqrt(5))/2. Let r = y - 2 = golden ratio (A001622). It appears that
2 - r <= n*x - a(n) < r and 2 - r < b(n) - n*y < r for all n >= 1.
LINKS
EXAMPLE
a(1) = 1, so b(1) = 5 - a(1) = 4. In order for a() and b() to be increasing and complementary, we have a(2) = 2, a(3) = 3, a(4) = 5, etc.
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
u = 5; v = 5; z = 220;
c = {v}; a = {1}; b = {Last[c] - Last[a]};
Do[AppendTo[a, mex[Flatten[{a, b}], Last[a]]];
AppendTo[c, u Length[c] + v];
AppendTo[b, Last[c] - Last[a]], {z}];
c = Flatten[Position[Differences[a], 2]];
a (* A305847 *)
b (* A305848 *)
c (* A305849 *)
(* Peter J. C. Moses, May 30 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 11 2018
STATUS
approved