login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305850
Weigh transform of the Bell numbers (A000110).
4
1, 1, 2, 7, 21, 78, 305, 1304, 6007, 29854, 159012, 904986, 5479078, 35150263, 238033523, 1695554145, 12663533586, 98881246850, 805128085616, 6820302066048, 59983405937707, 546690232627480, 5154757226832625, 50208266917662433, 504482106565647708
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1+x^k)^Bell(k).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*g(n-j), j=1..n))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1,
Sum[Binomial[n - 1, j - 1]*g[n - j], {j, 1, n}]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[g[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 11 2018
STATUS
approved